## 181. Diazotisations in Highly Concentrated Mineral Acids: The Nitrosation Mechanism of Anilinium and Hydroxylammonium Ions through Proton Loss from the Ammonio Group

by Heinrich Zollinger

Technisch-Chemisches Laboratorium, Eidgenössische Technische Hochschule, CH-8092 Zürich

## (18. VIII. 88)

It is shown that the acidity dependence of the rate of nitrosation of aromatic amines and of hydroxylamine in strongly acidic aqueous solutions does not necessarily involve the rearrangement of a charge transfer complex (consisting of the NO<sup>+</sup> ion and the substrate with an NH<sub>3</sub><sup>+</sup> group) in concert with a proton loss at the NH<sub>3</sub><sup>+</sup> group. More likely, proton loss of the charge complex preceeds the  $\pi \rightarrow N$  rearrangement of the NO<sup>+</sup> ion.

**Introduction.** – The influence of the acidity of the aqueous medium on diazotisations has been an object of investigation since the pioneering work of *Ridd* and coworkers in 1958 [1]: in the low acidity region (normally in the pH range of 1 to 3), the rate of diazotisation decreases with increasing concentration of hydrogen ions. In an intermediate region, corresponding to  $h_o$  of ca.  $10^{-1}$  to  $10^3$ , the rate increases linearly with acidity, and finally, in high acidity media ( $h_o > 10^4$ ), the rate decreases again with acidity.

For all three regions, *Ridd* [2] [3] proposed mechanisms which are consistent with the kinetic results. In this paper, we discuss only the mechanisms in the intermediate and high-acidity regions.

The marked acid catalysis in the intermediate region indicates that the new nitrosating reagent is the (solvated) nitrosyl cation (NO<sup>+</sup>) formed in the overall *Equilibrium 1*.

$$H_2SO_4 + HNO_2 \rightleftharpoons NO^+ + HSO_4^- + H_2O$$
(1)

The linear correlation between the concentration of the effective nitrosating reagent and the rate of diazotisation implies, however, as postulated by *Challis* and *Ridd* [4], that the anilinium ion and not aniline must enter the substitution proper, forming a dicationic charge-transfer complex of NO<sup>+</sup> with the anilinium ion. For the rate-limiting step, a  $\pi \rightarrow N$  rearrangement, concerted with *N*-deprotonation, forming the *N*-nitrosoanilinium monocation was postulated [5]. This conclusion is supported by some other unusual features, notably in the pattern of substituent effects in the aniline ring; the influence of *p*-substituents is the reverse of that observed in the low-acidity range.

*Ridd* [2] explained the anewed rate decrease at high acidities by assuming that the rate-limiting step at high acidities is the deprotonation of the N-nitrosoanilinium ion.

In the present communication, we intend to present a mechanism which involves also the anilinium ion, but which offers a reasonable explanation for the reactivity of this relatively weak nucleophile. **Discussion.** – Since the 1960's, a large amount of data with several completely different probes indicate that the  $Me_3N^+$  group, along with the unsubstituted ammonio group  $NH_3^+$ , is a modest  $\pi$  donor with a resonance effect similar to that of the isoelectronic  $Me_3C$  group. The donor activity of the  $NH_3^+$  substituent, however, is much smaller than that of the  $NH_2$  group.

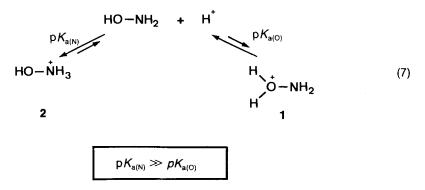
It is, therefore, not trivial to ask, if the  $NH_3^+$  group of the anilinium ion is really not changed in the course of the formation of the covalent N-N bond yielding the *N*-nitroso-anilinium ion.

The fundamental issue of our present communication is based on the postulate that the  $pK_a$  value of the dicationic charge-transfer complex must be significantly lower than that of the anilinium ion: electrophilic complexation of any benzene derivative bearing a *Brönsted*-acid group such as NH<sub>3</sub><sup>+</sup> will increase the acidity constant of that group. Incorporating this consideration into the reaction mechanism of diazotisation, the *Ridd* mechanism is modified as shown in *Eqns. 2–6*.

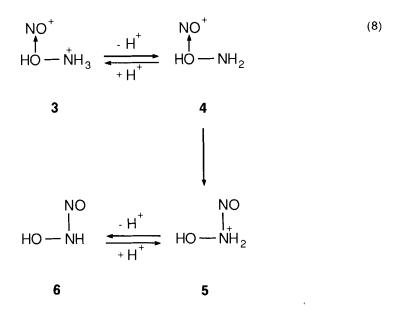
$$\bigwedge \dot{\mathsf{N}}\mathsf{H}_3 \stackrel{\mathsf{p}\mathcal{K}_{a(\mathsf{N})}}{\longleftrightarrow} \bigwedge \bigwedge \mathsf{N}\mathsf{H}_2 + \mathsf{H}^{\star} \tag{2}$$

$$\underbrace{\bigwedge_{i=1}^{+NO^{+}}}_{NH_{3}} \underbrace{\stackrel{NO^{+}}{\stackrel{i=1}{\longrightarrow}}}_{NH_{3}} \overset{NO^{+}}{(3)}$$

$$\overset{\mathsf{NO}^{\dagger}}{\overset{\bullet}{\longrightarrow}} \overset{\mathsf{PK}_{a(m)}}{\overset{\bullet}{\longrightarrow}} \overset{\mathsf{NO}^{\dagger}}{\overset{\bullet}{\longrightarrow}} \mathsf{NH}_{2} + \mathsf{H}^{\dagger}$$
(4)


The essential basis of this mechanism, therefore, is the deprotonation of the chargetransfer complex (*Eqn. 4*). That equilibrium is situated more on the right side than that of the uncomplexed anilinium ion (*Eqn. 2*) :  $pK_{a(N)} \gg pK_{a(\pi)}$ . This facilitates the rearrangement of the NO<sup>+</sup> group from the charge-transfer position to an NH<sub>2</sub> group and not anymore to an NH<sub>3</sub><sup>+</sup> group. Comparing our mechanism (*Eqns. 2–6*) with the original *Ridd* mechanism, one realizes that *Ridd* combined the steps of *Eqns. 4* and 5 in a concerted rearrangement-deprotonation step. This is indicated in *Eqns.* 4 and 5 by the dashedarrow 'short-cut' between the charge-transfer complex and the N-nitrosoanilinium ion.

Our mechanism (Eqns. 2-6) is of course also applicable to strongly acidic conditions. The only difference is the deprotonation of N-nitrosoanilinium ion, *i.e.* the first step of the steps summarized in Eqn. 6 becoming rate-limiting.


In that context the diazotisation of heteroaromatic amines in highly acidic media is interesting. Recently *Diener* [6] demonstrated that the rates of diazotisation of 2-amino-thiazole in 65 to 75% H<sub>2</sub>SO<sub>4</sub> solution show a dependence on acidity and a kinetic deuterium isotope effect which is significantly lower than the corresponding figures for the diazotisation of aniline [7] in the same medium (2-aminothiazole: rate proportional to  $h_o^{-0.69}$ ,  $k_H/k_D = 5.8$ ; aniline:  $h_o^{-2.4}$ ,  $k_H/k_D = 10$ ). This comparison shows clearly that the rate-determining part of the diazotisation of 2-aminothiazole contains only one deprotonation, whereas that of aniline contains two.

2-Aminothiazole is protonated first at the heterocyclic N-atom ( $pK_a = 5.28$ , [6]), but does not add a second proton up to solutions in 90% H<sub>2</sub>SO<sub>4</sub> (see [8]). It is, therefore, possible, but less likely that, in nitrosations of 2-aminothiazole, a  $\pi$ -complex of NO<sup>+</sup> with the heteroaromatic thiazolium system is formed first. Direct N-nitrosation is easier, however, for that heterocyclic amine than for the anilinium ion, because it contains an NH<sub>2</sub> and not an NH<sub>3</sub> group.

In the nitrosation of an inorganic amino compound, namely hydroxylamine, dinitrogenoxide (N<sub>2</sub>O) is the final reaction product. As shown by *Hughes* and *Stedman* [9], the kinetics of that reaction in acidic solution are very similar to the diazotisation of aniline. They showed that the overall reaction rate is too great to involve the *O*-protonated hydroxylamine (1) which is present only in an extremely small concentration in the acidic media used by *Hughes* and *Stedman* (aqueous HClO<sub>4</sub>). The equilibrium between the two protonated isomers of hydroxylamine (*Eqn. 7*) is very much in favour of the *N*-protonated isomer **2**. Therefore, *Hughes* and *Stedman* suggested that the nitrosating agent replaces a proton of the hydroxylammonium ion **2**.



In analogy to *Ridd*'s work with aromatic amines, it is possible that the O-atom of the hydroxylammonium ion 2 provides electrons for the formation of a charge-transfer complex 3 with the NO<sup>+</sup> ion (*Eqn. 8*). For obvious reasons, the NH<sub>3</sub><sup>+</sup> group of complex 3 is much more acidic than the NH<sub>3</sub><sup>+</sup> group in non-complexed hydroxylammonium ion 2:  $pK_{a(3)} \gg pK_{a(N)}$ . Complex 3 will, therefore, loose a proton of the NH<sub>2</sub> group relatively



easily<sup>1</sup>). Afterwards, the NO<sup>+</sup> group of the complex 4 can rearrange to the hydroxy-nitroso-ammonium ion 5 which, in turn, will loose another proton yielding N-nitroso-hydroxylamine 6.

The essence of the mechanism which we postulate is a separation of the *concerted* rearrangement and the deprotonation into *two* steps, namely *de* protonation of the  $NH_3^+$  ion complex *followed* by rearrangement of  $NO^+$  to the  $NH_2$  group. In a review of nitrosation published more than 10 years after his original work on diazotisations in relatively strong acid asolutions, *Ridd* [10] points out in a footnote that in such reactions 'the interaction of  $NO^+$  with the protonated amine appears to facilitate the proton loss'. This statement is almost in agreement with our mechanism (*Eqns. 2–6*)!

I am grateful to Prof. J. H. Ridd, University College, London, for valuable discussions.

## REFERENCES

- [1] E. D. Hughes, C. K. Ingold, J. H. Ridd, J. Chem. Soc. 1958, 65.
- [2] J.H. Ridd, Quart. Revs. 1961, 15, 418.
- [3] J.H. Ridd, J. Soc. Dyers Colourists 1965, 81, 355.
- [4] B.C. Challis, J.H. Ridd, J. Chem. Soc. 1962, 52.
- [5] E.C.R. de Fabrizio, E. Kalatzis, J.H. Ridd, J. Chem. Soc. (B) 1966, 533.
- [6] H. Diener, Ph. D. Thesis, ETH Zürich, 1984.
- [7] B.C. Challis, J.H. Ridd, Proc. Chem. Soc. 1960, 245.
- [8] G. Tóth, B. Podányi, J. Chem. Soc., Perkin Trans. 2 1984, 91.
- [9] M. N. Hughes, G. Stedman, J. Chem. Soc. 1963, 2824.
- [10] J.H. Ridd, Adv. Phys. Org. Chem. 1978, 16, 1.

<sup>&</sup>lt;sup>1</sup>) O-Deprotonation of 3 is, of course, possible too. It is even more dominant than N-deprotonation for obvious reasons. It can be neglected, however, in this context, because O-deprotonation is a side-equilibrium which does not lead to the reaction product N<sub>2</sub>O.